The presence of charged dust grains is known to have a profound impact on the physical evolution of the multiphase interstellar medium (ISM). Despite its importance, this process is still poorly explored in numerical simulations due to its complex physics and the tight dependence on the environment. Here, we introduce a novel implementation of grain charging in the cosmological radiative transfer code CRASH. We first benchmark the code predictions on a series of idealized dusty H II regions created by a single star, in order to assess the impact of grain properties on the resulting spatial distribution of charges. Secondly, we perform a realistic radiative transfer simulation of a star-forming region extracted from a dusty galaxy evolving in the Epoch of Reionization. We find that ~13 per cent of the total dust mass gets negatively charged, mainly silicate and graphite grains of radius 10-3 μm. A complex spatial distribution of grain charges is also found, primarily depending on the exposure to stellar radiation and strongly varying along different lines of sight, as a result of radiative transfer effects. We finally assess the impact of grain properties (both chemical composition and size) on the resulting charge distribution. The new implementation described here will open up a wide range of possible studies investigating the physical evolution of the dusty ISM, nowadays accessible to observations of high- and low- redshift galaxies.

Radiative transfer of ionizing radiation through gas and dust: grain charging in star-forming regions / Glatzle, Martin; Graziani, Luca; Ciardi, Benedetta. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 510:1(2021), pp. 1068-1082. [10.1093/mnras/stab3459]

Radiative transfer of ionizing radiation through gas and dust: grain charging in star-forming regions

Graziani, Luca
;
2021

Abstract

The presence of charged dust grains is known to have a profound impact on the physical evolution of the multiphase interstellar medium (ISM). Despite its importance, this process is still poorly explored in numerical simulations due to its complex physics and the tight dependence on the environment. Here, we introduce a novel implementation of grain charging in the cosmological radiative transfer code CRASH. We first benchmark the code predictions on a series of idealized dusty H II regions created by a single star, in order to assess the impact of grain properties on the resulting spatial distribution of charges. Secondly, we perform a realistic radiative transfer simulation of a star-forming region extracted from a dusty galaxy evolving in the Epoch of Reionization. We find that ~13 per cent of the total dust mass gets negatively charged, mainly silicate and graphite grains of radius 10-3 μm. A complex spatial distribution of grain charges is also found, primarily depending on the exposure to stellar radiation and strongly varying along different lines of sight, as a result of radiative transfer effects. We finally assess the impact of grain properties (both chemical composition and size) on the resulting charge distribution. The new implementation described here will open up a wide range of possible studies investigating the physical evolution of the dusty ISM, nowadays accessible to observations of high- and low- redshift galaxies.
2021
radiative transfer; (ISM:) dust; extinction; cosmology: theory; Astrophysics - Astrophysics of Galaxies; Astrophysics - Cosmology and Nongalactic Astrophysics
01 Pubblicazione su rivista::01a Articolo in rivista
Radiative transfer of ionizing radiation through gas and dust: grain charging in star-forming regions / Glatzle, Martin; Graziani, Luca; Ciardi, Benedetta. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 510:1(2021), pp. 1068-1082. [10.1093/mnras/stab3459]
File allegati a questo prodotto
File Dimensione Formato  
Glatzle_Radiative transfer_2021.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1599250
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact